
소프트웨어 공학 개론

강의 11: UML 코드 매핑

최은만
동국대학교 컴퓨터공학과

강의 11: UML 코드 매핑

최은만
동국대학교 컴퓨터공학과

구현 작업

l 작업 이후 본격적으로 시스템을 구축하는 단계
l 프로그램, 즉 코드 모듈을 구축하는 과정

22

StarUML 코드 생성

l Tools->Java->Generate Code

3

정적 모델의 구현

l 설계를 프로그램으로 매핑
l 클래스 다이어그램과 패키지 다이어그램이 프로그램과 밀접

l 추상 수준에 따라 구현에 도움이 되는 정도가 다름

l 개념 수준 – 도메인 개념
l 명세 수준 – 인터페이스와 타입
l 구현 수준 – 구현에 종속적인 사항을 포함

4

l 설계를 프로그램으로 매핑
l 클래스 다이어그램과 패키지 다이어그램이 프로그램과 밀접

l 추상 수준에 따라 구현에 도움이 되는 정도가 다름

l 개념 수준 – 도메인 개념
l 명세 수준 – 인터페이스와 타입
l 구현 수준 – 구현에 종속적인 사항을 포함

4

클래스의 구현

l 클래스 코드의 골격
l 속성 – 클래스 안의 인스턴스 변수
l 오퍼레이션 – 클래스 안의 메소드

55

상속

l UML 표현이 언어 문법에 1대 1 매칭

66

연관의 구현
l 연관

l 두 클래스에 속한 객체들이 정보를 추적할 수 있게 하려는 것

l 양방향 연관

l 두 클래스가 같은 패키지 안에 있어야

l 양방향은 두 클래스가 서로 상대편 객체를 알고 있어야 하므로 서로를 알

기 위한 public 메소드와 private 변수가 있어야

// no need to import if in same package

class Schedule
{

public Schedule() { } //constructor
private Student theStudent;

}

7

l 연관

l 두 클래스에 속한 객체들이 정보를 추적할 수 있게 하려는 것

l 양방향 연관

l 두 클래스가 같은 패키지 안에 있어야

l 양방향은 두 클래스가 서로 상대편 객체를 알고 있어야 하므로 서로를 알

기 위한 public 메소드와 private 변수가 있어야

Schedule

Student

class Student
{

public Student() { }
private Schedule theSchedule;

}

// no need to import if in same package

class Schedule
{

public Schedule() { } //constructor
private Student theStudent;

}

l 역할의 추가
l 각 클래스가 다른 클래스에 대하여 알고 있어야
l 예) CourseOffering 클래스는 public 메소드 CourseOffering()가 있어야

하며 private 타입의 Professor 객체를 가지고 있어야
l Professor 클래스는 public 메소드 Professor()와 private 타입의

CourseOffering 객체를 알고 있어야 함

Professor
class Professor
{

private CourseOffering theCourseOffering;
public Professor() {}

}

연관의 역할

88

Professor

CourseOffering

instructor

class Professor
{

private CourseOffering theCourseOffering;
public Professor() {}

}

class CourseOffering
{

private Professor instructor;
public CourseOffering() {}

}

theCourseOffering

다중도의 구현

l 사례
l CourseOffering 클래스는 public method CourseOffering()을 가짐
l 클래스 Schedule에는 네 개의 CourseOffering 객체를 가질 수 있는 배

열 또는 리스트가 있어야 함

CourseOffering
class CourseOffering
{
public CourseOffering() {}
}

99

Schedule

class Schedule
{
private CourseOffering[] primaryCourses =

new CourseOffering[4];
public Schedule() {}
public getCourseOffering() { return

primeryCourse.element(); }
public addCourseOffering(CourseOffering c)

primaryCourse.add(c);
}

class CourseOffering
{
public CourseOffering() {}
}

0..4 primaryCourses

집합 관계의 구현

l ‘Student’클래스는 Vector 리스트 타입의 클래스를 선언
l 집합을 위한 생성자는 따로 없음. 객체의 배열로 취급
l 집합 관계의 구현은 연관 관계와 차이가 없음

Schedule
class Schedule
{
public Schedule() { }
private Student theStudent;
}0..*

1010

Student

class Schedule
{
public Schedule() { }
private Student theStudent;
}0..*

1

import java.util.Vector;

class Student
{
public Student() { }
private Vector theSchedule;

}

합성 관계

l 객체의 존폐에 대한 제어가 있는 집합 관계
l 집합 개념의 클래스가 요소 개념의 객체의 생성과 소멸을 제어

Schedule
class Schedule
{
public Schedule() { }
private Student theStudent;
}

0..*

이 부분은 집합 관
계와 동일

1111

Student

class Schedule
{
public Schedule() { }
private Student theStudent;
}

1

import java.util.Vector;

class Student
{
public Student() { }
private Vector theSchedule = new Vector();
}

추상 클래스의 구현

l 객체가 생성되는 클래스가 아니라 상속된 클래스가 구체적으로 구현
하도록 메소드와 변수의 선언만 있는 템플릿

l <<Abstract>> 프로토타입 표기

abstract class Animal
{
public abstract void talk();

}

Animal
{abstract}

+talk() {abstract}

1212

abstract class Animal
{
public abstract void talk();

}

Lion

+talk()

Tiger

+talk()

class Tiger extends Animal
{
public Tiger() { }
public void talk() { }

}

+talk() {abstract}

패키지의 구현

l 패키지 다이어그램
l 클래스의 모임인 패키지의 구성과 의존 관계 표시
l import 또는 include 사용

l 패키지 선언

Package

1313

package com.abc.library;
class ClassA …. {
…
}

동적 모델링의 구현

l 순서 다이어그램
l 메시지의 호출을 표현

l 상태 다이어그램
l 상태를 표현하는 법
l 상태의 변환을 메소드로 구현하는 법

l 액티티비 다이어그램
l 제어흐름을 메소드에 구현하는 법

1414

l 순서 다이어그램
l 메시지의 호출을 표현

l 상태 다이어그램
l 상태를 표현하는 법
l 상태의 변환을 메소드로 구현하는 법

l 액티티비 다이어그램
l 제어흐름을 메소드에 구현하는 법

순서 다이어그램의 구현

l 순서 다이어그램
l 협력하는 객체들 사이의 메시지 교환을 나타낸 것
l 메시지는 화살표 나가는 객체에서 들어오는 객체로 메소드 호출
l 메시지를 받는 객체는 제 3의 객체에게 하나 이상의 메시지를 호출

할 수 있음

l 순서 다이어그램을 코딩하는 방법
l 메시지는 메소드의 호출로 코딩. 객체의 생성은 생성자(constructor)

를 호출
l 메시지를 받는 객체의 클래스 안에 메소드 구현
l 분기구조는 if-else 문장과 같은 조건문으로 구현
l 병렬구조는 thread로 구현

1515

l 순서 다이어그램
l 협력하는 객체들 사이의 메시지 교환을 나타낸 것
l 메시지는 화살표 나가는 객체에서 들어오는 객체로 메소드 호출
l 메시지를 받는 객체는 제 3의 객체에게 하나 이상의 메시지를 호출

할 수 있음

l 순서 다이어그램을 코딩하는 방법
l 메시지는 메소드의 호출로 코딩. 객체의 생성은 생성자(constructor)

를 호출
l 메시지를 받는 객체의 클래스 안에 메소드 구현
l 분기구조는 if-else 문장과 같은 조건문으로 구현
l 병렬구조는 thread로 구현

순서 다이어그램의 구현

ClassB
{
ClassC o3;
ClassD o4;
method1(…)
{
o3.method2(..);
o4.method3(..);

}
}

16

•메시지가 호출 당하는 클래스 안에 메소드 구현

16

ClassB
{
ClassC o3;
ClassD o4;
method1(…)
{
o3.method2(..);
o4.method3(..);

}
}

사례 – 수강 신청 과정

17

구현 된 코드

public class CourseSection
{

// The many-1 abstraction-occurence association
private Course course;

// The 1-many association to class Registration
private List registationList;

// The following are present only to determine
// the state
// The initial state is ‘Planned’
private boolean open = false;
private boolean closedOrCancelled = false;

...
}

public CourseSection(Course course)
{

this.course = course;
RegistrationList = new LinkedList();

}

18

public class CourseSection
{

// The many-1 abstraction-occurence association
private Course course;

// The 1-many association to class Registration
private List registationList;

// The following are present only to determine
// the state
// The initial state is ‘Planned’
private boolean open = false;
private boolean closedOrCancelled = false;

...
}

public CourseSection(Course course)
{

this.course = course;
RegistrationList = new LinkedList();

}

18

구현된 코드

public void cancel()
{
// to ‘Cancelled’ state
open = false;
closedOrCancelled = true;
unregisterStudents();

}
public void openRegistration()
{
if(!closedOrCancelled)
// must be in ‘Planned’ state
{
open = true;
// to 'OpenNotEnoughStudents' state

}
}

public void closeRegistration()
{
// to 'Cancelled' or 'Closed' state
open = false;
closedOrCancelled = true;
if (registrationList.size() <
course.getMinimum())

{
unregisterStudents();
// to ‘Cancelled’ state

}
}

19

public void cancel()
{
// to ‘Cancelled’ state
open = false;
closedOrCancelled = true;
unregisterStudents();

}
public void openRegistration()
{
if(!closedOrCancelled)
// must be in ‘Planned’ state
{
open = true;
// to 'OpenNotEnoughStudents' state

}
}

19

public void closeRegistration()
{
// to 'Cancelled' or 'Closed' state
open = false;
closedOrCancelled = true;
if (registrationList.size() <
course.getMinimum())

{
unregisterStudents();
// to ‘Cancelled’ state

}
}

구현된 코드

public void requestToRegister(Student student)
{

if (open) // must be in one of the two 'Open' states
{
// The interaction specified in the sequence diagram
Course prereq = course.getPrerequisite();
if (student.hasPassedCourse(prereq))
{

// Indirectly calls addToRegistrationList
new Registration(this, student);

}

// Check for automatic transition to 'Closed' state
if (registrationList.size() >= course.getMaximum())
{
// to ‘Closed’ state
open = false;
closedOrCancelled = true;

}
}

} 20

public void requestToRegister(Student student)
{

if (open) // must be in one of the two 'Open' states
{
// The interaction specified in the sequence diagram
Course prereq = course.getPrerequisite();
if (student.hasPassedCourse(prereq))
{

// Indirectly calls addToRegistrationList
new Registration(this, student);

}

// Check for automatic transition to 'Closed' state
if (registrationList.size() >= course.getMaximum())
{
// to ‘Closed’ state
open = false;
closedOrCancelled = true;

}
}

} 20

구현된 코드
// Activity associated with ‘Cancelled’ state.
private void unregisterStudents()
{
Iterator it = registrationList.iterator();
while (it.hasNext())
{
Registration r = (Registration)it.next();
r.unregisterStudent();
it.remove();

}
}

// Called within this package only, by the
// constructor of Registration
void addToRegistrationList(
Registration newRegistration)

{
registrationList.add(newRegistration);

}
}

2121

// Activity associated with ‘Cancelled’ state.
private void unregisterStudents()
{
Iterator it = registrationList.iterator();
while (it.hasNext())
{
Registration r = (Registration)it.next();
r.unregisterStudent();
it.remove();

}
}

// Called within this package only, by the
// constructor of Registration
void addToRegistrationList(
Registration newRegistration)

{
registrationList.add(newRegistration);

}
}

상태 다이어그램의 구현

l Inactive 객체의 상태 다이어그램을 구현하는 방법

l 상태 다이어그램을 클래스로 매핑

l 상태정보를 저장하기 위한 속성 추가

l 이벤트는 메소드로 상태 변화나 이벤트의 액션은 메소드 안에 탑재

22

l Inactive 객체의 상태 다이어그램을 구현하는 방법

l 상태 다이어그램을 클래스로 매핑

l 상태정보를 저장하기 위한 속성 추가

l 이벤트는 메소드로 상태 변화나 이벤트의 액션은 메소드 안에 탑재

22

상태 다이어그램의 구현

l 모든 상태는 상태를 나타내는 속성의 값
l 상태 변화는 클래스의 메소드
l 가드는 메소드 안의 조건 체크

public void event_n(….) {
switch (state) {
case state_k:
if (guard_condition_w) {
state = state_m;
perform actions of the transition;

}
break;

case state_v:
…
…

}
}

2323

public void event_n(….) {
switch (state) {
case state_k:
if (guard_condition_w) {
state = state_m;
perform actions of the transition;

}
break;

case state_v:
…
…

}
}

è

내장된 상태다이어그램의 구현

l 순차 서브상태를 가진 복합 상태(composite state)
l 서브 상태를 구현하기 위한 내장 클래스 생성
l 부모 상태 머신에서 내부 상태 다이어그램의 상태 변화를 제어하기 위한

메소드(내부 상태 클래스 안의) 호출
l 다른 구현 방법은 복합 상태를 제거하기 위하여 내장 상태 다이어그램을

펼쳐서 구현

l 병렬 서브상태를 가진 복합 상태
l 각 서브 상태를 구현하기 위한 내장 클래스 생성
l 내장 상태 머신의 구현과 유사
l 모든 병렬 서브 상태가 종료되면 복합 상태를 빠져 나오도록 코딩

24

l 순차 서브상태를 가진 복합 상태(composite state)
l 서브 상태를 구현하기 위한 내장 클래스 생성
l 부모 상태 머신에서 내부 상태 다이어그램의 상태 변화를 제어하기 위한

메소드(내부 상태 클래스 안의) 호출
l 다른 구현 방법은 복합 상태를 제거하기 위하여 내장 상태 다이어그램을

펼쳐서 구현

l 병렬 서브상태를 가진 복합 상태
l 각 서브 상태를 구현하기 위한 내장 클래스 생성
l 내장 상태 머신의 구현과 유사
l 모든 병렬 서브 상태가 종료되면 복합 상태를 빠져 나오도록 코딩

24

사례 – 자판기 제어

l 자판기 제어 객체의 상태 변화
l 내장 상태(dispense soft drink)를 가진 복합 객체

2525

자판기 제어 객체

l 상태 다이어그램을 하나의 클래스로 구현
l 상태 정보를 저장하는 _state 속성 추가

class VendingMachineControl
{
int _state;
float _amount, _price;
static final int WaitingCoin = 1;
static final int WaitingSelection = 2;
static final int DispensingSoftDrink = 3;
static final int DispensingChange = 4;
static final int EjectingCoins = 5;

2626

class VendingMachineControl
{
int _state;
float _amount, _price;
static final int WaitingCoin = 1;
static final int WaitingSelection = 2;
static final int DispensingSoftDrink = 3;
static final int DispensingChange = 4;
static final int EjectingCoins = 5;

상태 초기화

l 생성자 안에서 상태 변수 및 기타 변수 초기화

public VendingMachineControl(float pric
e)
{
_amount = 0;
_state = WaitingCoin;
_price = price;

}

2727

public VendingMachineControl(float pric
e)
{
_amount = 0;
_state = WaitingCoin;
_price = price;

}

이벤트는 메소드로

l 상태천이와 이벤트의 액션은 메소드 안에 구현

2828

public void insertedCoin(float coinValue)
{

if (state == WaitingCoin)
{

amount += coinValue;
if (amount >= price) { // fire transition

state = WaitingSelection;
show available soft drinks;

}
}

} // insertedCoin

서브 상태의 구현

l 서브 상태는 별도의 클래스로 정의

class DispenseControl {
int _state;
static final int DispensingSoftDrink = 1;
static final int DispensingChange = 2;
static final int Complete = 3;
public dispenseControl()
{
_state = DispensingSoftDrink;

}

2929

class DispenseControl {
int _state;
static final int DispensingSoftDrink = 1;
static final int DispensingChange = 2;
static final int Complete = 3;
public dispenseControl()
{
_state = DispensingSoftDrink;

}

강좌 8: 동적 다이어그램의 코딩 29

서브 상태의 구현

l 서브 상태 안의 상태변화는 서브 상태를 나타내는 클래스의 메소드
로

public boolean dispensedSoftDrink()
{
if (_state == DispensingSoftDrink) {
_state = DispensingChange;
dispense change;

}
return false;

}

3030

public boolean dispensedSoftDrink()
{
if (_state == DispensingSoftDrink) {
_state = DispensingChange;
dispense change;

}
return false;

}

서브 상태의 구현

l 서브 상태 안의 상태변화는 서브 상태를 나타내는 클래스의 메소
드로

public boolean dispensedChange()
{
if (_state == DispensingChange) {
_state = Complete;
return true;

}
return false;

}

31

public boolean dispensedChange()
{
if (_state == DispensingChange) {
_state = Complete;
return true;

}
return false;

}

31

서브 상태의 초기화

l 서브 상태를 나타내는 클래스 정의
l 서브 상태 객체 생성 및 초기화

class VendingMachineControl
{
..declaration of state attribute, constants, other attributes;
declaration of inner class dispenseControl;

..public VendingMachineControl(float price)
{
_amount = 0;
_state = WaitingCoin;
_price = price;
_substate = new DispenseControl();

}

32

class VendingMachineControl
{
..declaration of state attribute, constants, other attributes;
declaration of inner class dispenseControl;

..public VendingMachineControl(float price)
{
_amount = 0;
_state = WaitingCoin;
_price = price;
_substate = new DispenseControl();

}

32

서브 상태의 구현

l 서브 상태 안의 상태 천이는 서브 상태는 나타내는 객체의 메소드
호출

33

public void dispensedSoftDrink() // VendingMachineControl
{
if (_state == Dispensing) {
boolean isComplete = _substate.dispensedSoftDrink();

}
}

33

메인과 서브 상태의 연결

l 서브 상태의 종료조건 체크 후 메인 상태로 전환

// VendingMachineControl
public boolean dispensedChange()
{
if (_state == Dispensing) {
boolean isComplete =

_substate.dispensedChange();
if (isComplete) {
amount = 0;
_state = WaitingCoin;

}
}

}

34

// VendingMachineControl
public boolean dispensedChange()
{
if (_state == Dispensing) {
boolean isComplete =

_substate.dispensedChange();
if (isComplete) {
amount = 0;
_state = WaitingCoin;

}
}

}

34

상태 패턴의 적용

VendingMac
hine

StateOfMachine

state variable handle()
transit()control(state)

transit()

35

WaitingCoin Selection Dispensing

handle()
transit()

Client
vc.control(state)

handle()
transit()

handle()
transit()

액티비티 다이어그램의 구현

l 액티비티나 프로시저 안에서 수행되어야 할 액션들의 순서를 나타냄
l 제어 객체나 서브시스템의 알고리즘이나 제어 흐름을 나타냄
l 프로그램의 위치, 즉 프로그램의 제어문, 반복문 으로 액티비티 다이어그

램의 제어 흐름을 구현

l 액티비티 다이어그램을 코딩 하는 일반적인 규칙
l 액션 상태는 메소드 호출이나 일반 계산문장으로 구현
l 제어 노드는 if-then-else 문장으로 구현
l 병렬 노드는 스레드로 구현
l 반복 구조는 while 루프로 구현

36

l 액티비티나 프로시저 안에서 수행되어야 할 액션들의 순서를 나타냄
l 제어 객체나 서브시스템의 알고리즘이나 제어 흐름을 나타냄
l 프로그램의 위치, 즉 프로그램의 제어문, 반복문 으로 액티비티 다이어그

램의 제어 흐름을 구현

l 액티비티 다이어그램을 코딩 하는 일반적인 규칙
l 액션 상태는 메소드 호출이나 일반 계산문장으로 구현
l 제어 노드는 if-then-else 문장으로 구현
l 병렬 노드는 스레드로 구현
l 반복 구조는 while 루프로 구현

36

액티비티 다이어그램의 구현

while (true) {
amount = 0.0;
while (amount < price) {

wait for a coin;
add coin value to amount;

}
show all available soft drink;
while (selection is not done) {

wait for selection from user;
if selection is “eject coins” {

dispense coins;
set selection to “done”;

}
else if selection is a valid soft drink {

dispense change & soft drink concurrently;
set selection to “done”

}
}

}

3737

while (true) {
amount = 0.0;
while (amount < price) {

wait for a coin;
add coin value to amount;

}
show all available soft drink;
while (selection is not done) {

wait for selection from user;
if selection is “eject coins” {

dispense coins;
set selection to “done”;

}
else if selection is a valid soft drink {

dispense change & soft drink concurrently;
set selection to “done”

}
}

}

구현 단계의 UML 다이어그램

l 컴포넌트 다이어그램
l 원시코드의 단위가 되는 실행 컴포넌트 사이의 관계

l 컴포넌트의 인터페이스

38

l 컴포넌트 다이어그램
l 원시코드의 단위가 되는 실행 컴포넌트 사이의 관계

l 컴포넌트의 인터페이스

38

배치 다이어그램

l 배치 다이어그램
l 런 타임 처리 요소의 형상과 소프트웨어 컴포넌트, 결과물, 프로세스가

어디에 위치하는지를 나타냄
l 노드와 커뮤니케이션 경로를 나타냄

3939

237점157점464점

교

Questions?

237점157점464점

교

Questions?

